
Moon Oulatta, PhD

0.1 The Simple Linear Regression Model: Selected Issues
A company wishes to examine the effect of consumer interactions on the quality of employee perfor-
mance during in-store transactions as means to make better managerial decisions to improve sales. The
lead economist at the company naively proposes the following population regression model

quality = γ0 + γ1time+ ε (1)

where quality (y) denotes a continuous index of performance quality for the sales representative and time
(z) denotes the total number of minutes that the consumer spends interacting with the sales representative
during the in-store transaction. γ0 and γ1 are the unknown population parameters to be estimated and
ε denotes the error term, which captures any variables that affect performance quality, which are not
captured in equation (1). The company has multiple stores in the country and it is impossible to collect
transaction data for the entire population of stores on a timely basis. Therefore, the lead economist
proposes to collect a sample of transactions from the entire population of stores: let us assume that the
lead economist relies on a random sampling method (for example, cluster sampling, which is the method
that I covered in class) to ensure that the data are not subject to a sample selection bias. Secondly, we
make the assumption that there is no missing data and that the sample size is relatively large, which
is a necessary condition to ensure that the sampling distribution of the ordinary least squares (OLS)
estimators is approximately normal. Lastly, using the cross sectional data set, the lead economist
estimates the naive sample regression model as follows

ˆqualityi = γ̂0 + γ̂1timei (2)

where i denotes a subscript for in-store transaction and ˆqualityi denotes the predicted performance quality
scores. γ̂0 and γ̂1 are the OLS estimators of the unknown population parameters. Here, the estimated
regression model specified in equation (1) is problematic for multiple reasons:

• The relationship between transaction time and performance quality does not appear to be unidirec-
tional. In this case, simultaneity causation is prevalent. The more time the sales representative
spends interacting with the costumer, the more he can learn about the consumer’s preferences and
then be in a better position to assist him effectively: therefore, interaction time is expected to im-
prove quality performance. Concomitantly, a stronger sales performance also requires more inter-
action time with the customer, which means that an increase in quality performance simultaneously
causes an increase in interaction time (that’s a reasonable theoretical assumption to make). Hence
simultaneity causation implies the following

E(ε|z) ̸= 0

which indicates that interaction time is not mean independent of the error term (review the concept
of independence from class notes) due to simultaneity causation. This is a clear violation of the
Gauss Markov Assumptions covered in class, because interaction time is now correlated with
the error term: cov(z,ε) ̸= 0. Consequently γ̂1 is a biased and inconsistent estimator of γ1: this is
shown as follows

E(γ̂1) = γ1 +
cov(z,ε)
var(z)

• Another issue that is worth considering here is the omitted variable bias problem. It is possible
to assume that there are other relevant variables that affect performance quality, which are not
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included in equation (1), but are also likely to be correlated to interaction time: for instance, price
discounts for different items in the store is a potent omitted variable in equation (1). Firstly,
because the more different types of price discounts the store offers, the more interaction time would
be needed to inform the customer about these available benefits. Secondly, the more benefits the
costumer receives, the more she will appreciate the transaction and purchase more items, which
implies that the price discounts variable is also an important determinant of performance quality.
Given these two conditions, it becomes clear that equation (1) is misspecified. Price discounts
should be included in equation (1), but it is not: this implies that it lies in the error term and the
correlation between interaction time and the error term is no longer zero, because price discounts
are also correlated (but not perfectly) to interaction time. Therefore, it is entirely possible to assume
that equation (1) suffers from an omitted variable bias. Which implies that the OLS estimators
obtained from equation (2) are biased and inconsistent. Nonetheless, the regression model could be
improved by controlling for other important factors (for example, price discounts, etc.). However,
addressing the issue simultaneity causation would require a different empirical model (for example,
an instrumental variable approach would be useful here, but this beyond the scope of this specific
lecture).

• Another potential issue is functional-form misspecification: if the true relationship between in-
teraction time and performance quality is nonlinear; in other words, let us assume that there is
an optimal interaction time that maximizes performance quality and past this threshold, any in-
creases in interaction time contributes to a decrease in performance quality (note that this is a
reasonable practical assumption). This implication is that the true population regression function
should be specified as follows

E(quality|time) = γ0 + γ1time− γ2time2

which is different than the estimated regression model specified in equation (2), which does not
account for non-linearity in interaction time: hence the issue. Functional-form misspecification
arises when the sample regression function differs from the population regression function. This
issue clearly leads to biased and inconsistent OLS estimators.

• Observational data are often subject to imperfections (for example, macroeconomic data are ex-
tremely difficult to measure and prone to large residual errors and revisions). Survey data are often
affected by measurement errors induced by inaccurate reporting by the survey’s participants. The
idea is that if you are working with survey data or macroeconomic data: you are more likely to
experience data issues emanating from measurement errors. Therefore, it is important to under-
stand the different ways in which these measurement errors in the data could influence the validity
of the empirical results derived from a linear regression model. For the simple linear regression
model, a classical measurement error in the data leads to inefficient or biased and inconsistent
OLS estimators. When the classical measurement error emanates from the dependent variable, the
OLS estimators remain unbiased, but they are no longer BLUE, due to the inflated variance of the
estimators caused by the measurement error. Consequently, from class notes, we know that the
standard errors of the estimators will be larger than normal when the variance of the OLS estima-
tors is inflated. This lack of efficiency implies that the t-statistics are always going to be lower in
light of a classical measurement error in the dependent variable: hence a principal limitation of the
simple linear regression model. More importantly, the main point here is that we are more likely
to make a type-2 error in the inference process when the dependent variable is measured with
a single classical measurement error: in other words, we are more likely to make the mistake of
accepting the null-hypothesis, when it should actually be rejected.

• Here, I will demonstrate the biasedness proof for the case of the classical measurement error in the
independent variable in the simple linear regression model. Firstly, let us assume that equation (1)
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represents the true population model and that the model satisfies the Gaus-Markov assumptions.
Then, in absence of measurement errors in the independent variable, we can show that the OLS
estimator is unbiased as follows

E(γ̂1) =
cov(γ0,z)+ γ1 · var(z)+ cov(ε,z)

var(z)
≡ γ1 (3)

Now, let us assume that the lead economist cannot perfectly observe and measure interaction time.
Therefore, he measures interaction time with a single error. This implies that measured interaction
time can be defined as the sum of the true value of interaction time plus the measurement error as
follows

zm = z+ εz.

solving for (z) in the above and reinserting it into equation (1) yields the following model

y = γ0 + γ1zm + v (4)

where equation (4) is the model with the measurement error, which is to be estimated by the lead
economist via OLS. Note that the residual term (v) now includes two components (v = ε − γ1εz),
which is where the main problem lies. Here, the measurement error is considered classical as long
as it is mean independent:

E(ε|z) = E(ε) = cov(εz,z) = 0

In the presence of a classical measurement error in interaction time, (γ̂1) is biased and inconsis-
tent. To prove the latter, let us first assume that the economist estimates equation (4) with the
measurement error and obtained the OLS estimator of the slope as follows

γ̂1 =
cov(zm,y)
var(zm)

now inserting equation (4) into the above simplifies the solution as follows

γ̂1 =
cov(zm,γ0 + γ1zm + v)

var(zm)
99K

{
γ1

cov(zm,zm)

var(zm)
+

cov(zm,γ0)

var(zm)
+

cov(zm,v)
var(z)+2cov(z,εz)+ var(εz)

}
from class notes, using the covariance rules from the first week of class, the above can be simplified
further as follows

γ̂1 = γ1 +
cov(zm,v)

var(z)+2cov(z,εz)+ var(εz)

now inserting (v = ε − γ1εz) and (zm = z+ εz) into the above yields

γ̂1 = γ1 +
cov(z+ εz,ε − γ1εz)

var(z)+2cov(z,εz)+ var(εz)

one needs to rely on the Gauss Markov assumptions and the classical error assumption to simplify
the above. Effectively, the latter imply that both the error term and the measurement error are mean
independent, which indirectly signifies that cov(z,ε), cov(εz,ε), and cov(z,εz) are all equal to zero.
Given these latter assumptions, the above can be simplified as follows

γ̂1 = γ1 +
cov(εz,−γ1εz)

var(z)+ var(εz)
99K γ1 − γ1

σ2
εz

(σ2
z +σ2

εz)
(5)
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note that in the above, I used the sigma notation, instead of using the var notation, so as to be con-
sistent with your book. By simplifying equation (5), it becomes relatively easy to derive equation
(9.33) in your book as follows

γ̂1 =
γ1σ2

z

(σ2
z +σ2

εz)

then by taking the expectation on both sides, one can show that estimating equation (4) via OLS
leads to a biased estimator of the slope as follows

E(γ̂1) =
γ1σ2

z

(σ2
z +σ2

εz)
̸= γ1 (6)

here, mathematically and technically, equation (6) states that the variance of true interaction time
(σ2

z ) is always going to be less than the variance of measured interaction time (σ2
z +σ2

εz): as long
as σ2

εz > 0, the ratio of the variances in equation (6) is always going to be less than 1. Which means
that the OLS estimator of the slope is always going to be biased towards zero: this is the so called
attenuation bias. Using the proof, it becomes easy to visualize the bias that arises in a simple
linear regression model with a classical error in the explanatory variable. The key here is that
the magnitude of the bias depends on the size of the measurement error: holding everything else
constant, the larger the measurement error, the more biased the estimate would be towards zero. (i)
If γ1 > 0, then the OLS method will always underestimate the true value of γ1. Alternatively, if
γ1 < 0, then the OLS method will always overestimate the true value of γ1.

• In theory, the classical measurement error assumption holds, but in practice it may not always be
the case: for instance, a non-classical measurement error in the dependent variable can also lead
to biasedness in the OLS estimators. Furthermore, for the multiple regression model, the case of a
classical measurement error in one independent variable yields more ambiguous conclusions about
the OLS estimators: this is discussed further in other chapters.
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